The following Tables 1, 2, 3, 4 present a complete list of all commutation symmetries e: C ® C× that can be defined over arbitrary subgroups C of S6. The calculation of this list is described in Section ..
We list only representatives C of classes of conjugate subgroups in our Tables. Every row of a Table contains information relating to such a representative C Í S6. The first column of a Table gives the order |C| of C, the third column contains a set of generators of C. If C is a conjugate group of a subgroup of a Sr with r < 6, then we have chosen such a representative C that possesses the fixed points r+1, ¼, 6. Thus all commutation symmetries belonging to subgroups of a Sr with r < 6 can be found in our Tables, too. (Look at the generators.)
The second column of a Table contains the orders of the images e(C) of commutation symmetries e that are possible on C. An entry '663321' means that there are two groups e(C) of order 6, two groups e(C) of order 3, one group e(C) of order 2 and one group e(C) of order 1 up to the equivalence of commutation symmetries defined in Section ..
The colums 4, 5, ... give the values that a homomorphism e: C ® S1 takes on the generators of C. The sequence of these columns corresponds to the sequence of the orders |e(C)| in column 2. If an entry '663321' is given in the second column, then the columns 4 and 5 contain the e-values of groups e(C) of order 6. The e-values of the groups e(C) of order 3 are arranged in columns 6 and 7 and the e-values of the groups groups e(C) of order 2 and 1 are given in columns 8 and 9, respectively.
If for two such homomorphisms e, e¢: C ® S1 an isomorphism f: e(C) ® e(C) with f ¹ id exists such that there holds true e¢ = f°e, then we write a sign ' @ ' in the Table. A ' @ ' in the k-th columns means that the homomorphism e¢ in the k-th column can be obtained from the homomorphism e in the (k - 1)-th column by an isomorphism f.
|C| | |e(C)| | generators of C | values of e | |||||||
2 | 21 | {2,1,3,4,5,6} | -1 | 1 | ||||||
2 | 21 | {2,1,4,3,5,6} | -1 | 1 | ||||||
2 | 21 | {2,1,4,3,6,5} | -1 | 1 | ||||||
3 | 331 | {2,3,1,4,5,6} | e[(-2 i)/ 3] p | @ e[2 i/ 3] p | 1 | |||||
3 | 331 | {2,3,1,5,6,4} | e[(-2 i)/ 3] p | @ e[2 i/ 3] p | 1 | |||||
4 | 4421 | {3,4,2,1,5,6} | -i | @ i | -1 | 1 | ||||
4 | 221 | {1,2,4,3,5,6} | -1 | 1 | 1 | |||||
{2,1,3,4,5,6} | -1 | -1 | 1 | |||||||
4 | 21 | {2,1,4,3,5,6} | -1 | 1 | ||||||
{3,4,1,2,5,6} | -1 | 1 | ||||||||
4 | 4421 | {2,1,5,6,4,3} | -i | @ i | -1 | 1 | ||||
4 | 2221 | {1,2,3,4,6,5} | -1 | 1 | -1 | 1 | ||||
{2,1,4,3,5,6} | -1 | -1 | 1 | 1 | ||||||
4 | 221 | {1,2,4,3,6,5} | -1 | 1 | 1 | |||||
{2,1,5,6,3,4} | -1 | -1 | 1 | |||||||
4 | 21 | {1,2,4,3,6,5} | -1 | 1 | ||||||
{2,1,3,4,6,5} | -1 | 1 | ||||||||
5 | 55551 | {2,3,4,5,1,6} | e[(-2 i)/ 5] p | @ e[4 i/ 5] p | @ e[(-4 i)/ 5] p | @ e[2 i/ 5] p | 1 | |||
6 | 21 | {2,3,1,4,5,6} | 1 | 1 | ||||||
{1,3,2,4,5,6} | -1 | 1 | ||||||||
6 | 663321 | {2,3,1,5,4,6} | e[(-i)/ 3] p | @ ei/3 p | e[(-2 i)/ 3] p | @ e[2 i/ 3] p | -1 | 1 | ||
6 | 21 | {1,2,4,5,3,6} | 1 | 1 | ||||||
{2,1,3,5,4,6} | -1 | 1 | ||||||||
6 | 663321 | {4,3,6,5,2,1} | e[(-i)/ 3] p | @ ei/3 p | e[(-2 i)/ 3] p | @ e[2 i/ 3] p | -1 | 1 | ||
6 | 21 | {3,5,4,1,6,2} | 1 | 1 | ||||||
{1,2,4,3,6,5} | -1 | 1 | ||||||||
6 | 21 | {4,6,2,5,1,3} | 1 | 1 | ||||||
{2,1,4,3,6,5} | -1 | 1 | ||||||||
8 | 2221 | {3,4,2,1,5,6} | 1 | -1 | -1 | 1 | ||||
{1,2,4,3,5,6} | -1 | 1 | -1 | 1 | ||||||
8 | 4444 | {3,4,2,1,5,6} | -i | @ i | -i | @ i | -1 | -1 | 1 | 1 |
2221 | {3,4,2,1,6,5} | i | @ -i | -i | @ i | 1 | -1 | -1 | 1 | |
8 | 2221 | {2,1,5,6,4,3} | 1 | -1 | -1 | 1 | ||||
{1,2,3,4,6,5} | -1 | 1 | -1 | 1 | ||||||
|C| | |e(C)| | generators of C | values of e | |||||||
8 | 2221 | {2,1,5,6,4,3} | 1 | -1 | -1 | 1 | ||||
{1,2,5,6,3,4} | -1 | 1 | -1 | 1 | ||||||
8 | 2221 | {1,2,5,6,4,3} | -1 | 1 | -1 | 1 | ||||
{2,1,3,4,6,5} | -1 | -1 | 1 | 1 | ||||||
8 | 2221 | {1,2,3,4,6,5} | 1 | 1 | -1 | 1 | ||||
{1,2,4,3,5,6} | 1 | -1 | -1 | 1 | ||||||
{2,1,3,4,5,6} | -1 | -1 | -1 | 1 | ||||||
8 | 2221 | {1,2,3,4,6,5} | 1 | -1 | -1 | 1 | ||||
{2,1,4,3,5,6} | 1 | 1 | 1 | 1 | ||||||
{3,4,1,2,5,6} | -1 | 1 | -1 | 1 | ||||||
9 | 33331 | {1,2,3,5,6,4} | e[(-2 i)/ 3] p | @ e[2 i/ 3] p | 1 | @ 1 | 1 | |||
{2,3,1,4,5,6} | e[(-2 i)/ 3] p | @ e[2 i/ 3] p | e[(-2 i)/ 3] p | @ e[2 i/ 3] p | 1 | |||||
10 | 21 | {2,4,1,5,3,6} | 1 | 1 | ||||||
{1,3,2,5,4,6} | -1 | 1 | ||||||||
12 | 331 | {1,3,4,2,5,6} | e[(-2 i)/ 3] p | @ e[2 i/ 3] p | 1 | |||||
{2,3,1,4,5,6} | e[2 i/ 3] p | @ e[(-2 i)/ 3] p | 1 | |||||||
12 | 2221 | {2,1,4,5,3,6} | -1 | -1 | 1 | 1 | ||||
{1,2,3,5,4,6} | -1 | 1 | -1 | 1 | ||||||
12 | 2221 | {5,3,6,2,4,1} | -1 | -1 | 1 | 1 | ||||
{1,2,4,3,6,5} | -1 | 1 | -1 | 1 | ||||||
12 | 331 | {3,4,5,6,1,2} | e[(-2 i)/ 3] p | @ e[2 i/ 3] p | 1 | |||||
{3,4,6,5,2,1} | e[(-2 i)/ 3] p | @ e[2 i/ 3] p | 1 | |||||||
16 | 2222 | {1,2,5,6,4,3} | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 |
2221 | {2,1,5,6,4,3} | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | |
{1,2,3,4,6,5} | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | ||
18 | 663321 | {2,3,1,4,6,5} | e[(-i)/ 3] p | @ ei/3 p | e[(-2 i)/ 3] p | @ e[2 i/ 3] p | -1 | 1 | ||
{2,3,1,5,4,6} | e[(-i)/ 3] p | @ ei/3 p | e[(-2 i)/ 3] p | @ e[2 i/ 3] p | -1 | 1 | ||||
18 | 663321 | {4,5,6,2,3,1} | e[(-i)/ 3] p | @ ei/3 p | e[(-2 i)/ 3] p | @ e[2 i/ 3] p | -1 | 1 | ||
{4,5,6,3,1,2} | ei/3 p | @ e[(-i)/ 3] p | e[2 i/ 3] p | @ e[(-2 i)/ 3] p | -1 | 1 | ||||
18 | 21 | {1,2,3,5,6,4} | 1 | 1 | ||||||
{2,3,1,4,5,6} | 1 | 1 | ||||||||
{1,3,2,4,6,5} | -1 | 1 | ||||||||
20 | 4421 | {2,4,1,5,3,6} | 1 | @ 1 | 1 | 1 | ||||
{1,4,5,3,2,6} | -i | @ i | -1 | 1 | ||||||
|C| | |e(C)| | generators of C | values of e | |||||||
24 | 21 | {2,3,4,1,5,6} | -1 | 1 | ||||||
{2,4,1,3,5,6} | -1 | 1 | ||||||||
24 | 663321 | {3,4,5,6,2,1} | e[(-i)/ 3] p | @ ei/3 p | e[(-2 i)/ 3] p | @ e[2 i/ 3] p | -1 | 1 | ||
{3,4,6,5,1,2} | e[(-i)/ 3] p | @ ei/3 p | e[(-2 i)/ 3] p | @ e[2 i/ 3] p | -1 | 1 | ||||
24 | 663321 | {1,3,4,2,6,5} | e[(-i)/ 3] p | @ ei/3 p | e[(-2 i)/ 3] p | @ e[2 i/ 3] p | -1 | 1 | ||
{2,3,1,4,6,5} | ei/3 p | @ e[(-i)/ 3] p | e[2 i/ 3] p | @ e[(-2 i)/ 3] p | -1 | 1 | ||||
24 | 21 | {2,1,4,5,6,3} | -1 | 1 | ||||||
{2,1,4,6,3,5} | -1 | 1 | ||||||||
24 | 21 | {2,1,5,6,4,3} | -1 | 1 | ||||||
{3,4,2,1,6,5} | -1 | 1 | ||||||||
24 | 21 | {1,2,5,6,4,3} | -1 | 1 | ||||||
{3,4,2,1,5,6} | -1 | 1 | ||||||||
36 | 4421 | {4,5,6,1,3,2} | -i | @ i | -1 | 1 | ||||
{4,5,6,2,1,3} | -i | @ i | -1 | 1 | ||||||
36 | 221 | {1,3,2,5,6,4} | -1 | -1 | 1 | |||||
{2,1,3,5,6,4} | -1 | -1 | 1 | |||||||
{2,3,1,4,6,5} | -1 | 1 | 1 | |||||||
36 | 221 | {4,5,6,2,3,1} | -1 | -1 | 1 | |||||
{4,5,6,3,1,2} | -1 | -1 | 1 | |||||||
{4,6,5,2,1,3} | 1 | -1 | 1 | |||||||
48 | 2221 | {2,1,3,5,6,4} | -1 | -1 | 1 | 1 | ||||
{2,1,4,5,3,6} | -1 | -1 | 1 | 1 | ||||||
{1,2,4,5,6,3} | -1 | 1 | -1 | 1 | ||||||
48 | 2221 | {3,4,5,6,2,1} | -1 | 1 | -1 | 1 | ||||
{3,4,6,5,1,2} | -1 | 1 | -1 | 1 | ||||||
{1,2,5,6,4,3} | 1 | -1 | -1 | 1 | ||||||
72 | 2221 | {1,3,2,5,6,4} | -1 | 1 | -1 | 1 | ||||
{2,1,3,5,6,4} | -1 | 1 | -1 | 1 | ||||||
{2,3,1,4,6,5} | -1 | 1 | -1 | 1 | ||||||
{4,5,6,2,3,1} | -1 | -1 | 1 | 1 | ||||||
|C| | |e(C)| | generators of C | values of e | |||||||
60 | 1 | {2,3,4,5,1,6} | 1 | |||||||
{2,3,5,1,4,6} | 1 | |||||||||
60 | 1 | {1,3,6,5,2,4} | 1 | |||||||
{2,3,4,5,1,6} | 1 | |||||||||
120 | 21 | {2,3,4,5,1,6} | 1 | 1 | ||||||
{2,1,3,4,5,6} | -1 | 1 | ||||||||
120 | 21 | {2,3,4,5,1,6} | 1 | 1 | ||||||
{6,3,2,5,4,1} | -1 | 1 | ||||||||
360 | 1 | {1,3,4,5,6,2} | 1 | |||||||
{1,3,4,6,2,5} | 1 | |||||||||
{2,3,4,5,1,6} | 1 | |||||||||
720 | 21 | {2,3,4,5,6,1} | -1 | 1 | ||||||
{2,1,3,4,5,6} | -1 | 1 | ||||||||
File translated from TEX by TTH, version 2.10. On 6 Apr 1999, 23:07. |